Inquiry:
Could you provide an explanation of how the constants α_i and λ_i in the function $F(t,T)$ are determined? The λ_i appear to be decay constants but evidently are not. The α_i must be somehow related to fission product yield and decay energy.

Response:
The functional form of $F(t,T)$ is obtained by integrating the function $f(t)$ that describes the decay heat power following a single fission pulse. The α and λ coefficients are best understood by looking at the form of $f(t)$ as defined in the note for Tables 9-10 in Section 3.2 of ANSI/ANS-5.1-2005. The function $f(t)$ is fitted as a sum of exponentials such that the α and λ coefficients conservatively represent the experimental data over the range of measurements and calculated data for cooling times where no measurements exist. This functional form accurately represents the data and has a physical basis since fission product decay is predominantly exponential.